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Backlund transformations and solutions to Kdv-type equations 

Ladislav HlavatL 
Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, Prague 8, 180 40 
Czechoslovakia 

Received 6 November 1984 

Abstract. Backlund transformations for the non-potential MKdV equation and its Calogero- 
Degasperis-Fokas modifications are presented and used for finding particular, wave-type 
solutions to the equations. 

1. Introduction 

The most powerful method for the solution of nonlinear partial differential equations 
seems to be the inverse scattering transform. Nevertheless, it has its limitations, namely 
it yields only regular solutions usually tending to zero for x + fm.  There are, of course, 
other solutions that do not satisfy the requirements and still may be physically applicable 
or at least interesting from the mathematical point of view. It is therefore useful to 
investigate other methods of solutions too. The Backlund transformations ( BTS) provide 
a very succesful and relatively simple method. 

Recently I found BTS that, to the best of my knowledge, are new and the solutions 
produced by them are reported in the following sections. 

2. Backlund transformations for modified MKdv equations 

A few years ago Fokas (1980) derived a class of Kdv-type equations that should be 
exactly solvable. The class consists of equations that can be written in one of the 
following forms 

U ,  + U ,  - K (U,)' =O, 

U ,  + U-, - K ( u , ) ~  - F(u)u ,  =O, 

where K is constant and F is a function satisfying 

F"'(u) = 8 K F ' ( u ) .  (2.3) 

The equations (2.2) were also derived by a different approach by Calogero and 
Degasperis (1981). 

The equations (2.1) and (2.2) proved to be the only Kdv-type equations possessing 
a certain type of BT (HlavatL 1985) and explicit forms of the auto-srs are given in the 
following. 
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We shall deal only with equation (2.2), which for obvious reasons may be called 
the modified M K d v  equation. The BT for (2.1) is well known (Wahlquist and Estabrook 
1973) and explored. 

The auto-Bi-s for (2.2) are given by (Hlavatf 1985) 

W, - bz, = H (  W +  bz)( G( w - bz))”’ (2.4) 

where w ( x ,  t ) ,  z(x, t )  are supposed to be solutions of (2.2), b2= 1, and H, G are 
functions satisfying 

H“ = i K H  (2.5) 

G“’ = 2 KG’ (2.6) 

and related to F by the equation 

3 d  d 
2 dw dw 

F (  W )  - F ( z )  =-  -(H2( W +  bz ) ) -  ( G (  w - 

The other equation determining the BT namely w, =f( w, z, zt, z,, zxx)  can be derived 
from (2.2) and (2.4). We shall not display its general form which is rather complicated 
and of no use in what follows, but only its simplified version for z = z, = constant that 
reads 

(2.8) 

and will be helpful in the next sections. H, G in (2.8) mean H (  w + bz,), G(w - bz,) 
and the prime denotes the differentiation with respect to w. 

Given K it is easy to find the functions F, G, H that determine the equation and 
its BT. 

W, = w,{F(z,) + K H 2 G  -[( H’)”G - ( H’)’G’+ H’G”]} 

3. MKdv equation 

If K = O  and F is a quadratic function then (2.2) can be written in the form of the 
M K d v  equation 

u ~ + u , ~ , - ~ E u ~ u , = O  (3.1) 

where E is a constant. If E > 0 then the equation has no soliton solutions because the 
spectrum of the corresponding AKNS system has no discrete part (in contradistinction 
with the M K d v  with E < 0) and therefore not many explicit solutions of (3.1) with E > 0 
are known (see, e.g., Perelman et al 1974). 

In correspondence with the general formulae (2.4)-(2.7), the BT for (3.1) is given by 

w,- bz, = ( W  + bz)[E(W - bz)’+ U]”’. (3.2) 

w, = wX(2ez;- a )  (3.3) 

C := a + ~ E Z : ,  

If bz = I ,  = constant then it follows from (2.8) that 

and denoting 

6(x, t )  := ( ICI)1’2[~ + ( 2 ~ 2 ;  - U )  t - x,] (3.4) 

we obtain from (3.2) the following simple solutions of (3.1) (for details see appendix). 



Solutions to Kdv-type equations 

For C>O. E a = a 2 > 0  

w(x, t )  = C[2&zO+ a sinh O(x, r ) ] - ’ -  zo. 

For a = 0 ,  E > O  

w(x, t )  =[&”2(X-x)]-’, 

W(X, 1) = z0 coth[O(x, t)/2], 

w(x, t )  = zo tanh[B(x, t)/2]. 

For C>O, & a = - a 2 < 0  

W(X, t )  = C[~EZ,+ ty  cosh e(x, t1l-l - z0. 

For a = - 4 ~ z ;  

W(X, t)=4zo[l  - ~ E Z ; ( X + ~ E Z ; ~ - X ~ ) ~ ] - ’  -zo. 

For C<O, e a = - a 2 < 0  

w ( x ,  t )  = c[2ezo+ a sin e(x, t )]-’  - zo. 

1935 

(3.5) 

( 3 . 6 ~ )  

(3.66) 

( 3 . 6 ~ )  

(3.7) 

The superposition formula for the solutions of (3.1) 

( W ~ + W ~ ) [ E ( W , -  ~ , ) ~ + a ~ ] ~ ’ ~ + ( w , +  w3) [e (wI -  w ~ ~ + a ~ I ” ~  

= ( w 2 +  w o ) [ & ( w 2 -  ~ , , ) ~ + a ~ ] ” ~ + ( w , +  w3)[.5(w2- w 3 ) 2 + a l I ” 2  (3.10) 

follows from (3.2) and can be used for generation of more complicated solutions. 
The solutions (3.5)-(3.6b) are obviously singular but ( 3 . 6 ~ )  and (3.7)-(3.9) for 

E < 0 are regular. The solution (3.7) for E < 0, zo = 0 is the well known soliton solution. 
Let us remark finally that the BT (3.2) turns out to be more powerful than its 

counterpart for the potential M K d v  because e.g. the variety of solutions generated by 
(3.2) from a constant solution is larger than that generated by the BT for the correspond- 
ing potential M K d v .  

4. Modified MKdv equations 

In this section we are going to investigate the equation (2.2) with K # 0, which represents 
various modifications of the (potential) M K d v  equation. We shall omit the simplest 
case F ( u )  = 0 because its BTS are known (Wadati 1973, Lamb 1974) and explored. 

Let us start with K = 2 k 2  > 0. The equation (2.2) then reads 

U , +  ~ , , , - 2 k ~ ( u , ) ~ - ~ u , [ f +  exp(4ku)+f- exp(-4ku)+fo] = O  (4.1) 

where k, f*, fo are real constants. 

w,=bz,+(2k)-’{h+ exp[k(w+bz)]+h- exp[-k(w+bz)]} 

It follows from (2.4)-(2.6) that the BTS for this equation are given by 

x{g+ exp[2k(w - bz)]+g- exp[-2k(w - b ~ ) ] + g , ) ” ~ ,  (4.2) 
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where b2 = 1, and from (2.7) the following relations holds: 

If  b = + l  then h: = y- ' f* ,  g, = Y. (4.3a) 

If b = - 1  then h: = Y - I ,  g, = yf*. (4.36) 

The constant goy-' is a parameter of the BT. 

In a similar manner to the previous section, if z = zo = constant then 

and by the substitution 

W = exp[2k( w - bz)] 

(4.4a) 

(4.4b) 

(4.5) 

the equation (4.2) is in the form of the case solved in the appendix. The solutions of 
(4.1) are then of the form 

(4.6) W(X, t )  = (2k)-' logll/ Y ( X ;  A, B, C )  - PI + bzo 

X = h+ exp(2kbzo)[x - ut - x,], (4.7) 

A = g + ,  B = go - c = g- - g a p +  g + P 2 ,  (4.8) 

P = h- exp( -4kbzo)/ h+. (4.9) 

where Y is given by (A5)-(A13), 

If K = - 2 k 2  < 0 then (2.2) can be written in the form 

U,+U,,,+2k2(u,)3-3Eu, COS(4kU) =o .  (4.10) 

The BT for this equation is given by (cf (4.2)) 

w, = bz, + k-' sin[k( w + b z ) ] ( 2 ~  cos[2k( w - bz)]+ go)'". (4.11) 

If z = zo = constant then 

w, = - UW, = [ E  cos ( 4kz0) - go +Yo] w, 

and by the substitution 

W = tan[k( w - bz)] 

(4.12) 

(4.13) 

equation (4.11) is again in the form of the case solved in the appendix. The obtained 
solutions of (4.10) are 

w(x, t )  = k-' tan-'[l/ Y ( X ;  A, B, C ) - P I +  bzo (4.14) 

where Y is given by (A5)-(A13), 

X = C O S ( ~ ~ ~ Z ~ ) [ X  - U t  - xO], 

B = -2P(go - 2 ~ ) ,  

(4.15) 

(4.16) 

P = tan(2kbzo). (4.17) 

One can write down a superposition principle similar to (3.10) that comes from 
the BTS (4.11) and use it for finding more complicated solutions but the procedure is 
rather complicated and hardly of a practical use. 

A = go - 2 ~ ,  c = go( 1 + P2) + 2E( 1 - P2) ,  
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Regular solutions to (4.1) and (4.10) can be easily found out from (4.6)-(4.9) and 
(4.14)-(4.17) if the conditions in the end of the appendix are used. 

5. Conclusions 

We have presented BTS for the equations (2.2) and found some particular solutions to 
these equations. All of the solutions are wave-type because they were generated by 
the BTS from constant solutions and most of them are non-soliton solutions that would 
be difficult to derive by the inverse scattering method. 

Generation of more complicated solutions by the superposition principles based 
on the corresponding BTS is possible, but not very convenient. 

Appendix 

We are going to solve the equation 

y ‘ = ( p + ry ) ( a + by + cy’) ’” (‘41) 
where y = y ( x )  and p, r, a, 6, c are constants, r # 0, and investigate the regularity of 
solutions. 

Substituting 

y = l / Y - p / r  (A2) 

Y ‘ = ( A + B Y + C Y 2 ) ’ / ’  (‘43) 

A = c, B =  b-ZPc, C = a - b P +  cP2,  P = p / r .  (A41 

we get 

where 

Solution of this equation depends on the values of A, B, C so that we can solve Y as 
a function of X, A, B, C :  

Y(X;  A # 0, B = 0, C = 0) = A”’X, 

Y ( X ;  A, B # 0, C -0) = ( BX2/4- A)/B, 

Y ( X ;  A, B, C # 0) = [ Z ( X ;  C, D )  - B]/(2C), 

(A51 
(A61 

(‘47) 

where the function Z(X; C, D )  satisfies 

2’’ = C(Z2 - D ) ,  

D = B’ - 4AC, 

Z ( X ;  C, D )  = SD”~ sin[(-~)’/’,‘tl], 

iA8) 

( ‘49) 

so that for C < 0, D >  0 

(‘410) 

for C>O, D>O 

Z ( X ;  C, D )  = SO”’ cosh(C’/’X), 
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for C>O, D=O 

Z(X; C, D )  = s exp(*C’/‘X), (A121 

Z ( X ;  C, D ) = S ( - D ) ” ~ ~ ~ ~ ~ ( C ’ / ’ X ) ,  (‘413) 

for C>O, D<O 

where s = *l .  
Inserting (A5)-(A13) into (A2) we obtain various solutions of the equation (AI ) .  
From (A2) it is clear that regular solutions of ( A l )  are given by Y ( X ;  A, B, C )  

( 1 )  (A6) if A<0, 
(2) (A7), (A10) if A < 0 ,  
( 3 )  (A7), (A1 1 )  if sB < 0 or A < 0, 
(4) (A7), (A12) if sB < 0. 
For the regularity of (4.6) it is necessary to know which solutions of ( A l )  are 

(1 ‘ )  (A6) if A+ B/P<O,  
(2’) (A7), (A10) if A +  B/P<O,  
(3‘) (A7), ( A l l )  if a<O or s ( B + 2 C / P ) < O ,  
(4’) (A7), (A12) if s (B+2C/P)<O.  

that are different from zero for all X. They are 

different from zero. It means that Y ( X ;  A, B, C) # 1/P for all X that is true for 
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